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Random Walk Statistics on Fraetal Structures 

R. R a m m a !  1,2 

We consider some statistical properties of simple random walks on fractal 
structures viewed as networks of sites and bonds: range, renewal theory, mean 
first passage time, etc. Asymptotic behaviors are shown to be controlled by the 
fraetal (67) and spectral (aT) dimensionalities of the considered structure. A 
simple decimation procedure giving the value of d is outlined and illustrated in 
the case of the Sierpinski gaskets. Recent results for the trapping problem, the 
self-avoiding walk, and the true-self-avoiding walk are briefly reviewed. New 
numerical results for diffusion on percolation clusters are also presented. 

KEY WORDS: Random walk statistics; fractal structures; spectral dimension; 
percolation clusters. 

1. INTRODUCTION 

During the last year, the family of  fractal structures encountered in 
condensed matter physics has been considerably enriched. After the 
percolation clusters, which have been considered as the major example, a lot 
of  fractal objects have been discovered. We quote only two examples: (i) 
fractal aggregates ~1) obtained from diffusion-limited growth processes, and 
(ii) a remarkable variety of  adsorbents (2) (fractal surfaces). The fractal 
dimension d emerges as a first operative measure of the fractal geometry. 
However it is now recognized that fi'actal structures require the definition of 
(at least) three dimensions: d, the dimension of  the embedding Euclidean 
space; d, the fractal dimension; a7 the spectral dimension. ~3) For  Euclidean 
spaces, these three dimensions are equal. This can be construed as an 
"accidental" degeneracy. The spectral dimension ff is naturally associated 
with the power law of  the low-frequency density of  states (e.g., for elastic 
vibrations) p(~o)~co ~-1. Recently, it has been shown (4-6) that simple 
physical problems on fractals (classical diffusion, quantum localization, etc.) 
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are governed by this spectral dimension. In this review, we address the first 
problem of random walk (RW) on fractal lattices. The fractal structures 
considered are viewed as networks of sites and bonds (graphs). In Section 2, 
various statistical properties of RWs are reviewed. Section 3 is mainly 
devoted to two illustrative examples: trapping of the RW and the diffusion 
on percolation clusters. In Section 4, we shall summarize some recent results 
relating to self-avoiding walks (SAW) abd true self-avoiding walks (TSAW) 
on fractal lattices. In the concluding section we will give a nonexhaustive list 
of open questions, which call for further investigation in the future. 

2. RANDOM WALK STATISTICS 

Classical diffusion and random walks in Euclidean spaces are a well- 
known field of physics. (8) Several properties of related interest will be 
investigated in general: spatial distribution, range, renewal theory, etc. For 
instance, the mean-squared displacement from the origin at time t (or after N 
steps on a lattice), behaves asymptotically as(4'7): ( ~ 2 ) ~ N d / d ,  i.e., 
VRW = d/2d. AS it should be, the standard value VRw = 1/2 is recovered on an 
Euclidean lattice, where d = d .  The exponent Yaw appears here as a 
combination of the fractal (d) and spectral (~r) dimensions. This combination 
enters into the mean-squared displacement because the measure of Euclidean 
distances brings with it the fractal dimension. In order to obtain "pure" quan- 
tities, where the spectral dimension enters alone, one has to consider other 
RW properties which are reviewed below. 

2.1. Main Result 

2.1.1. Range of the RW. The range of a simple RW, R N is defined 
as the number of distinct sites visited up to step N. The behavior of the 

2 (R~) - (Rlv) 2 is well expectation value SN= (RN) and the variance a N = 
known on Euclidean lattices (8) of dimension d, and which is of interest for 
various problems. For instance (N >> 1), 

S N  ~ (8/701/2N1/2, aN _ 2  ~ N at d = 1 

S N "~ N/ln N, a~ ~-- N2/ln 4 N at d = 2 (1) 

and S u ~- N, 2 tru~--NlnN at d = 3 .  
On a fractal structure, the behavior of R u is controlled by the spectral 

dimension t~ only. The following properties hold in general on fractal 
structures. (6,9) 
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(i) The asymptotic behavior (iV>> 1) of S N is given by 

S N ~ N  a/2 if i f < 2  and S u ~ u  if i f />2 (2) 

In particular, 1 - F = limN_~ ~ SN/N -~ 0 at d ( 2. 
2 2 behaves as a N~-N and, the ratio (ii) For structures with d <  2, a N 

pN-~-aN/SN converges toward a finite value p~ at N =  ~ ,  which is a 
decreasing function of ~ For structure with d>~ 2, the limiting value p~ is 
zero. 

(iii) The reduced random variable X =  RN/S N converges in 
distribution to a proper law for d < 2 and to a degenerate law ( X ~  1 with 
probability one) for aT> 2. The presence of a distribution for the ratio X 
reveals the strong fluctuations of the range R u for N >> 1. i f=  2 appears in 
this sense as an upper critical dimension for the RW problem on fractals. 

The numerical results t9) obtained on fractals are in good agreement with 
the above properties. For instance, on a two-dimensional Sierpinski gasket, 
the obtained exponent for S N as given by Eq. (2) is 0.682 + 0.005 to be 
compared with the exact value if/2 = 0.68260. 

2.1.2. Renewal Theory. Another measurement of d is provided by 
the renewal theory, describing mainly the returns of the walker to the 
original site. Let Po(N) be the probability of return after N steps, v u the 
number of returns during that time and r ,  the time of the n th return to the 
origin. The asymptotic behavior of these related quantities can be 
summarized as follows. 

(i) The probability Po(N) of closed walks of length N is given by ~4) 
Po(N) ~ N -d/2 for all ~ This result can be viewed as the generalization of 
the corresponding result on Euclidean lattices: Po(N)~.~N -d/2. More 
generally, it is possible to define a set of critical exponents, in anology with 
the Gaussian model of phase transitions. It is interesting to note that, on a 
fractal structure, it is the fractal dimensionality d which replaces d in the 
Josephson scaling law: dv = 2 -- u. In general ~1~ the combination dv must be 
independent of d. 

(ii) The time r n until the nth return, when properly normalized (u = 
r , /n  1/~) admits an asymptotically stable distribution p(u ;a ,  1) with a = 
1 - d / 2  at aT< 2, a = 0 at d >  2. In particular, P r ( r J n l m ~  u ) ~ - u  -~  at 
u ~ l  a n d n ~ l .  

(iii) The related number v s giving the number of returns behaves as a 
power law: v , ~ _ N  ~, and Pr(vs /N ~ ~x)--~0(1)  at x ~  1 and N ~  1. 

From the statement (ii), we deduce: lim~v_~ r~v/N= ~ at i f<  2. This 
means that if r denotes the time of the first return to the original site, then v 
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is finite with probability one, whereas its mean value is infinite. Incidentially, 
it appears from (iii) that for N ~  oo, the number of returns to the origin in N 
steps increases proportionally to N = and not to N, as might be expected from 
the recurrence property of the RW at c7 < 2. 

2.1.3. Spatial Distribution. In general the spatial distribution of a 
RW is another interesting property, providing some additional information 
relating to the exploration of space. Using the standard Euclidean metric, the 
normalized spatial distribution of the RW position r, starting from a chosen 
site r = 0  can be written Piv(r )=Roaf ( r /Ro)  where r = l r  I denotes the 
distance from the origin at step N, R 0 is the "radial" extension of the walk 
R 0 ~ N ~Rw where VRw-~ ff/2d. The function f ( u )  of the reduced variable 
u = r/R o is not simple in general, in contrast with the Euclidean lattices 
where f ( u  ~> 1 ) ~  e x p ( -  ua), 6 = (1 -VRw) -1. However, the general form of 
PN(r) permits one to extract some interesting information. For instance, 
P r ( r >  ~). .~-l/vRw as ~--* Go. The cumulative time spent at the origin 
between step 0 and step N is given by fNpN(r = O ) d N ~ N  ~ as expected. 
Accordingly the fractal dimensionality D of the zero-crossing set is given by 
D = 1 -- ff/2 if ff < 2 and D = 0 if ff > 2. Another interesting quantity, which 
can be extracted from PN(r) is given by the mean first passage time TI( 0 at 
a distance ~ from the origin. It can be shown (9) that TI(~ ) is given by 

Tl(~) = ~o dNf~  r ~-lPN(r) dr~-~l/,Rw at ~ oo 

providing a useful method for the calculation of the exponent VRw. The 
special role played by d =  2 in the above discussion, appears also in the 
spatial behavior of the RW. Lets define 22 N ~_ R 0 a to be the number of effec- 
tively accessible sites during N steps. It is clear that S N ~ - S  u for d~< 2 
(compact exploration) and S u ~> S N at d > 2 (noncompact exploration). 

2.2. Decimation Procedure 

Because of dilation invariance, fractals lend themselves particularly 
conveniently to scaling approaches. In the following we shall illustrate such 
a scaling calculation for the RW properties on the Sierpinski gaskets. In that 
case ~5) d - -  ln(d + 1)/ln 2 and d =  2 ln(d + 1)/ln(d + 3). 

In general, if P, ( r )  denotes the probability that a RW is at site r after n 
steps, we have the recurrence 

Pn+l(r) = Z p(5) P,(r  -- 5) 
8 
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where p(8) denotes the transition probability for a displacement vector & 
Almost all information relevant to the RW statistics is contained in the 
generating function G(r, z) defined for complex z by G(r,z)= Y~, z"P,(r) 
and given by the solution of the following equation: 

G(r, z) - z ~ p(6) G(r - 6, z) = 6r, o 
6 

For instance, G(r = 0 ,  z) gives directly the probability of return to the 
original site after n steps. The generating function S(z) for the average 
number S u of visited sites is also given by (8) 

S(z)  = [(1 -- z) 2 G(0, z ) ] -1  

Moreover, the corresponding generating function for the number of returns is 
simply given by ( 1 - z )  -I G(O,z). These general results are valid on 
Euclidean spaces as well as on fractals. In general, G(0, z) exhibits a singular 
behavior at z = 1, following the generic form: G(O,z),~ ( 1 - z )  -~, z ~ 1. 
This singularity governs the asymptotic behavior of P,(0),  S n, etc. at n ~> 1. 
The value of the exponent a is therefore closely related to the spectral 
dimension ~ Its precise value can be extracted using the following 
decimation procedure. 

Let consider the example of the Sierpinski gasket in d dimensions, 
where p ( 8 ) =  1/2d. Starting from the equations of G(r, z) written for all r, 
one eliminates the amplitudes corresponding to the sites located at midpoints 
of hypertetrahedron edges at the lowest scale. This decimation procedure 
leads to a reduced set of equations describing the same physics, on a gasket, 
scaled down by a factor b --- 2. This exact renormalization leads to a renor- 
realized z and renormalized G(0, z). For instance, at d = 1 (linear chain) the 
renormalization equation can be written 

and 

z '  = z 2 / ( 2 -  z 2) 

G(0, z ' )  = K I ( Z  ) G(O,z), KI(Z ) = (1 -- g2/2) 

Close to the unstable fixed point z * =  1, Kl(z )~  1/2, ( 1 - z ' ) ~ 4 ( 1 - z ) ,  
giving the expected known value of a: a = In 2/ln 4 = 1/2. 

For d = 2, the same procedure yields similar expressions: 

z '  = z2/(4 - 3z) 

and 

G(O, z') = K2(z ) G(O, z), Kz(z) --- (2 + z)(4 -- 3z)/(4 + z)(2 - z) 
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In the vicinity of z* = 1, we have K2(z ) ~ 3/5 and (z' - 1) ~ 5(z - 1) and 
a = ln(5/3)/ln 5 as expected. 

More generally, in dimension d, one obtains the expected value of the 
exponent a: a = 1 - aT/2, where d =  2 ln(d + 1)/ln(d + 3). As can be seen the 
function G(O,z)  is in general the solution of an interesting nontrivial 
functional equation. However, the leading exponent a which governs the 
singular behavior at z ~ 1 is simply given by the associated linearized 
equation. The above-discussed procedure is very simple and may be useful in 
the investigation of more complicated related problems. Similar procedures 
were used previously ~6'11) in the investigation of other linear problems, like 
the spectrum of the Schr6dinger equation or the spectrum of harmonic 
excitation on the gaskets. 

3. TWO ILLUSTRATIVE EXAMPLES 

In this section we will illustrate the above results on two examples. The 
first is the calculation of the survival probability q~(t) of the RW in the 
presence of perfect traps. The second is the known example of the 
percolation clusters at threshold. Other examples are briefly discussed in the 
next section. 

3.1. Fractal Structure with Traps 

The excitation dynamics in the presence of a random distribution of 
trapping centers is known to be an important topic in condensed matter 
physics with application to optical spectroscopy, nuclear magnetic 
resonance, and particle transport. The motion of a particle (e.g., exciton) 
performing a RW on a regular lattice containing a given distribution of traps 
(binary systems: traps and active sites) provides a relatively good picture. 
Ternary crystals with three components (traps, active and binary molecules) 
lead to problems of a RW on a dilute lattice, in presence of traps. Keeping in 
mind the percolation clusters as a main example of practical interest, it is 
interesting to investigate the RW trapping on a general fractal 
structure. ~12'13) As can be shown below, all the decay properties are 
governed by the spectral dimension a~ 

Assume that the traps are distributed randomly on a fractal lattice, and 
they occupy the lattice sites with probability p. Traps are assumed to be 
perfect: the RW is instantaneously absorbed at the first encounter of a trap. 
The survival probability q~(t) at time t can be expressed in terms of the RW 
properties on a trap-free lattice 

cl)(t) = e:t (exp(--~.Rt) ) 
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where R t denotes the range of the RW (see Section 2.1) on a trap-flee lattice 
and 2 = -In(1 - p ) .  The origin of the walk is assumed to be not a trap and 
the average is taken over all possible realizations of the RW in space and 
time. 

3.1.1. Various Approximations. The above expression for ~(t)  
shows that the survival probability is completely dominated by the statistical 
properties of the range R t and therefore by the spectral dimension. Various 
approximations must therefore show this property. For instance, the first- 
order cumulant exl2ansion of ~(t), giving the short-time behavior, leads to 
�9 (t) --~ e x p ( - C .  ~,t d/z) at i f<  2 and exp ( -C '  �9 2 0 at i f>  2. Here C and C' 
denote numerical factors. This result is valid at short time and all concen- 
trations of traps. In order to go beyond the first-order approximation, we 
need the knowledge of the distribution of R t in great detail. However, more 
can be obtained in the limit of low concentration. As a first approximation, 
we can introduce the average time of capture T*, define by p �9 S*  ~ I, 
which leads to 

T * ~ p  -:/~ at d < 2  and p-1 at f f ~ 2  

In the spirit of an effective medium theory, the survival probability assumes 
an exponential decay, given by ~( t )~exp( - t /T*) .  This approximation, 
which is equivalent to the first term of the expansion in powers of the 
concentration p is valid at t ~7 T*. At short time ( t ~  T*), the previous 
expression must be replaced by q~(t)-~ 1 - S t / S t , .  

3.1.2. Fluctuat ion M e c h a n i s m .  The above approximation does not 
take into account the fluctuations of the trap density. It is clear however, that 
particle survival for long periods will occur only in sufficiently large trap- 
free regions. These regions are rare, but will govern the limit of large t. A 
standard argument leads to the following result: 

q~(t) --~ exp( -a  �9 pYtX), x = ff/(ff+ 2) and y = 1 - x = 2 / ( i f+  2) 

As expected, the fractal dimension d is absent in the final expression of q~(t). 
This result generalizes the known d/(d+ 2) law on Euclidean spaces, (14) 
obtained some years ago. Note that the argument leading to d / ( d +  2) law is 
similar to that giving the Lifshitz singularity. It can be shown that on a 
fractal lattice, such a singularity (if any) is controlled by d: we have simply 
to replace d by d. 

The range of validity of the fluctuation mechanism can be found by 
comparing the following two length scales: the diffusion length ~ and the 
average distance l ~  p-1/~ between two traps. Let us denote by t*,,~ p-2/~ 
the crossover time where I N ~D. The temporal behavior of ~(t)  is then 
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governed by two time scales: T* and t*. Following the previous analysis, 
two cases are to be distinguished. 

(i) d < 2. In that case, the RW is recurrent and t* ~ T*  ~ p-2/~:  only 
one time scale is involved and 

t l - C " p t  ~/2 at t , ~ t *  
~( t )  

e x p ( - ( t / t * )  x) at t >> t* 

(ii) d >  2. For such a transient RW the effective medium theory 
remains valid up to times such that t / T *  ~ ( t / t* )  x, i.e., t ~ p-`7/z. Therefore 
(t* ,~ p d/z) one obtains 

,7/2 e x p ( - t / T * )  at T* ~ t ~ p 

e x p ( - ( t / t * )  ~) at t >;> p-~ /2  

At short time (t < T*), the first expression hold also because T* ~ p-1 .  
Moreover, for vanishing p, q ~ ( t ) ~ - e x p [ - ( 1 - F ) t ,  p] as expected, where F 
has been defined in Section 2.1. 

3.1.3. Scaling Behavior at d < 2. Let consider the interesting case 
< 2, which corresponds to a compact exploration of space. The expression 

of q~(t) can be viewed as a function of the reduced random variable 
X = R t / S  t defined in Section 2.1 : 

cb(t) = ea ( e x p ( - 2 t  ~/z �9 X )  ) 

Using the result (Section 2.1) relative to the probability distribution of the 
random variable X, we deduce the following scaling expression for qJ(t), 
which is valid at all times and all concentrations: 

q~(t) = exp(fl - O(flta/2)) 

Here q)(v) denotes a universal function of the scaling variable v = )~t a/2. In 
the limit of low concentration (~. ~ p), we recover the previous results with 
O)(v) ~ v 2/~2+`7) at v >> 1 and, 9(v) ~ v at v ~ 1. 

3.2.  R W  on Percolation Clusters 

At a percolation threshold, the infinite percolation cluster is a fractal 
object. ~15) Therefore, the concepts of the previous sections can be brought to 
bear on the physics in the vicinity of the percolation threshold. It was 
recognized early that the fractal dimension of a percolation cluster at 
threshold can be expressed in terms of the critical exponents of the 
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percolation transition (tip, vp,.., indexed by p for percolation): d =  Opflp/_vp. 
Using the hyperscaling relation, d reduces to the familiar expression: d = 
d -  flffvp. Note that d = 4 for d )  6 in contrast to the last expression of d. 
This behavior of d may be traced to the breakdown of hyperscaling above 
the critical dimension. 

The spectral dimensionality 67 of the percolation cluster can be derived 
via a simple crossover argument. The result (4'5) is 67= 
2(dvp - f l p ) / ( t - t i p  + 2vp), where t denotes the conductivity exponent. This 
result is valid only at d ~ 6, and 67 sticks at 4/3 for d ~> 6. For instance, on 
the Bethe lattice (d = oo) we have (~6) d =  4 and 67= 4/3, which are the mean 
field values for the percolation problem. Close to but above the percolation 
threshold (p ~> Pc), the infinite cluster retains its local self-similarity up to 
the correlation length ~p ~ I P -  Pel-vP. Fractal to Euclidean crossovers are 
then expected to occur, and were studied by various authors. (7,16) In addition 
to the whole percolation cluster, its biconnected component is also a fractal 
object(17): the values of d and 67 are given by the same expressions above, 
where tip is replaced by fl~ (vp and t take the same values). The physics on 
the percolation cluster is closely related to that on its backbone. In fact, the 
localization exponent (5) i lL= (d/67)(67-2) takes the same value 
( = d - 2 -  t/vp) on these two structures. (~7) Taken into account the previous 
results, the average of various physical quantities over the size cluster 
distribution, as well as finite size effects are very easy to understand (~6'1v) 
and will not be discussed here. 

3.2.1. Universality of the Spectral Dimension: # = 4/3.  Empirically 
it was found (4) that the spectral dimension 67 as determined by the previous 
expression, with known estimates of t, v; and tip, apears to be numerically 
close to 4/3, for all dimensions 2 ~ d ~ 6 .  This finding leads to the 
remarkably simple prediction (5) for SN: 

S N ~ N 2/3 on percolating clus ters  

Actually, an argument has been presented, (~'18) which suggests that the 2/3 
might be an exact and not only approximate value. Define the "open 
frontier" as the number of fresh sites adjacent to the visited sites during an 
N-step random walk. It is given by FN=S~vdSN/dN and behaves 
asymptotically as: 0 fo rp  < Pc and S N fo rp  > Pc. If one assumes that, at the 
threshold p = Pc, the open frontier is marginally equal to the Gaussian fluc- 
tuation in the number of accessible sites, owing to the random percolation 

~,1/2 and the 2/3 law follows. process, then F N ~ ~N 

3.2.2. Numerical Results for <~. The 2/3 law has also been checked 
by computer experiment in two and three dimensions, using direct ~ or 
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indirect (19) estimations of d. Increasing confidence in this 2/3 law comes 
from recent direct (2~ numerical determination of the exponent d/2, using the 
law S N ~ N &2 at threshold for all dimensions 2 ~< d ~ 6 and d = m.  The 
cluster sizes M were chosen to be much larger than S N so as to avoid finite 
size effects (SN/M.~ 1). Averages were taken over  10 4 to 2 • 10 4 runs  of N- 
step walks (up to N~--4 • 10 4) of randomly chosen origin on the cluster. 
The size of the simulated cluster was much greater than 104 , for all 
dimensions. More extensive calculations were performed at d =  2 up to 
N ~  10 6 on clusters containing much more than 106 sites and inscribed 
inside boxes of size 1280 • 1280. The corresponding boxes at d =  3 had 
sides of order 300. From the numerical data, three points are to be noted: (i) 
S N (vs. N) takes very similar values for all dimensions, including d = oo; (ii) 
the asymptotical slope of S N is the same for all d, up to an accuracy of order 
5 N 1 0 - 3 ;  (iii) a systematic curvature is observed at all d, before reaching 
the asymptotic limit. The observed deviations follow the same pattern for all 
d, including the Bethe lattice case ( d =  m).  The corrections to scaling are 
therefore very important in the determination of the exponent of S N. The 
appropriate expression for S N takes the following form: 

SN=aNS ( l + b N - ` ~  (3) 

where s = at/2 and m is the correction to scaling exponent. Trial values for co 
and s were used in order to extract their precise values. The analysis of the 
numerical data shows that s (d=  6 ) - s ( d )  is smaller than 5 • 10 .3 for all 
d ~< 6. More surprising is the "universal" value of the exponent co: o9 _~ 1/6 
for all d >/2, including d = m.  Including exaggerated error bars leads to the 
finding: 1/6 <~ co < 1/4 for all d. In Table I, are shown the values of coef- 
ficients a and b in Eq. (3) as obtained from the numerical data. 

The results support strongly the prediction of the open frontier 
argument, with very good accuracy. On the other hand, the presence of a 
"Gaussian" correction N s - "  ~ N ~/2 supports a posteriori the basic picture of 
this argument. Note that at d =  1, S N ~ N  1/2 with a correction of order 
N-~/2. More generally the correction term to S N on a regular fractal can be 
shown to behave like N a/2-1. Therefore, the observed correction N 1/2 is 
particular and specific to the percolation clusters. The second comment is 
about the prediction of the e = 6 -  d expansion. Using the published (21) 
results for different exponents (vp,flp, and t), one obtains: d =  4/3 + ke 2, 
where k = 761/83349 -~ 9 • 10 -3 is a very small positive number. At least 
for d = 5, i.e., e = 1, where the e expansion is expected to provide a reliable 
estimation, there is no contradiction with the numerical estimation (up to the 
numerical accuracy). However, a further reexamination (2~) of the e 



Random Walk Statistics on Fractal Structures 557 

Table 1. Numerical Values of the 
Coefficients a and b a 

d Pc a b 

2 0.593 0.93 0.60 
3 0.312 0.84 0.56 
4 0.197 0.78 0.58 
5 0.141 0.75 0.60 
6 0.108 0,72 0.58 

0.500 0.55 0.74 

" See Eq. (3) for the expression of S N. 

d =- Euclidean dimension, Pc =~ site percolation 
threshold ( d =  m refers to the Bethe lattice of 
coordination number  z = 3). 

expansion would be welcome in order to resolve the discrepancy at lower 
dimensions. We believe that the 2/3 law is actually a very good prediction, 
which calls for a rigorous proof or disproof. Flory-like arguments in polymer 
physics provide another example o f  inexact but very good predictions. 

4. CORRELATED RW ON FRACTALS: SAW AND TSAW 

In the preceding section, it was shown that RWs have simple properties 
and provide a powerful probe giving access to the spectral dimension a~ The 
next step is naturally the study of the self-avoiding walks (SAW) and the 
true self-avoiding walks (TSAW) on fractal lattices. The first motivation is 
that different walkers explore differently and tell complementary stories. The 
second motivation is the remarkable success of the Flory approximation for 
SAW and TSAW on Euclidean spaces: is it accidental or not? In the 
following we shall summarize the main results on the subject. 

4.1. Self-Avoiding Walks 

Since only the end parts of SAWs can lie on dead ends, the asymptotic 
behavior of their radius is expected to be dominated by the structure of the 
backbone (i.e., doubly connected component) rather than by that of the full 
fractal space. The first important result ~1~ is that the combination dv is an 
intrinsic property, independent of the space in which the fractal is embedded, 
whereas d and v depend both on this embedding. Here d refers to the fractal 

822/36/5-6-4 
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dimension of the backbone. This observation leads, under the assumption 
that only d plays a role, to the following Flory formula, ~22) for fractals 

ff 3 f f 4 4  vv=--d d+ 2' 

This is the simplest approximation that reduces to the Flory form for 
Euclidean spaces (d refers to the backbone). The value d =  4 appears also as 
the upper critical dimension for the SAW problem on fractals. A direct 
argument ~5) showing that excluded-volume effects are negligible at ff > 4 can 
be outlined using the fractal dimension of the RW. 

Exact results for various lattices (22) show that this approximation is not 
very satisfactory and that properties of SAW depend on other intrinsic 
aspects of the fractal. For instance, for the Sierpinski gasket, we found 
v=0 .798  in two dimensions and v=0 .729  in three dimensions, to be 
compared with the above prediction for v r .  This suggests that the success of 
the Flory formula for Euclidean lattices is somewhat accidental, and that for 
general spaces there exists no comparable formula combining simplicity and 
accuracy. The implications of the above results for the controversial problem 
of SAW on percolating clusters will be found elsewhere. (z2) 

4.2. True Self-Avoiding Walks (23) 

Under the assumption that only ff plays a role, the same argument 
presented above suggests a similar approximation for the TSAW on fractals 

2 

d d + 2 '  

This approximation reduces to the corresponding expression for Euclidean 
spaces, (24) and shows that a7=2 plays the role of the upper critical 
dimension of TSAWs. Numerical simulations (25) on the two-dimensional 
Sierpinski gasket gives a surprisingly close value for the exponent v: 
0.510 + 0.005 to be compared with the above prediction: 0.5119. On the 
gasket, the exploration of space remains compact in spite of the repulsion. 
Given a compact volume which contains the walker, most points inside this 
volume are visited before a new site outside the volume is explored. An 
example of compact exploration is of course the one-dimensional RW or 
TSAW.(25) 

In view of the validity of the relations giving v for SAW and TSAW, it 
is of great interest to check this working hypothesis on different fractal 
structures. A more detailed understanding of the universality classes for 
SAW and TSAWs on fractals will be necessary to resolve that question. 
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5. C O N C L U S I O N  

To conclude, we shall list some questions, which call for investigation in 
the near future. 

l. Is d =  4/3 true or only a very good approximation on percolation 
clusters ? 

2. What  are the precise values of  17 on other fractal structures, like the 
diffusion-limited aggregates(27)? 

3. Are there other dimensions, such as the connectivity dimension, 
which play a key role in the understanding of  SAWs problems on fractals? 

The investigation of  different variants of  RWs on fractal lattices would 
be welcome, in view of  a more detailed unerstanding of  the universality 
classes for RWs on fractal lattices. 
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